
L-" 'T.ASSIF]3ED
SECURiTY CLASSIFICATION OF THIS PAGE (When Data Entered)

9 REPORT DOCUMENTATION PAGE EA-MTIONSP~ jBEFORE COMPLETEING FO L %

1. REPORT NUMBEDIG tIL [E.. 12. GOVT ACCESSION NO. 3. RECIPIENI'S CATALOG NUAtER

-4. TITLE (ndSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada qompiler Validation SummarycReport: Irvine 29 June 1987 to 29 June 1988

Compiler Corporation ICC Ada mp6Oer,Release 4.0, Gould 6650Rlae40 Gol 6606. PERFORMING ORG, REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERs)
% Wright-Patterson AFB OH 45433-6503

. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Pida Joint Program Office 29June 1987
United States Department of Defense '1. NUMBER OF PAGES
Washington, DC 20301-3081 36p.

14. MONITORING AGENCY NAME & ADDRESS(IfdifferentfromControllingOffice) 15. SECURITY CLASS (of this report)

Wright-Patterson AFB OH 45433-6503 UNCLASSIFIED
15a. R AFICATION/DOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED DTIC
/E EL E CT E 1

18. SUPPLEMENTARY NOTES jut i 3 8 .,

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Cffice, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

ICC Ada Compiler, Release 4.0. Irvine Compiler Corporation, Wright-
Patterson AFB, Gould 6050 under UTX, Version 2.0 (host and target).
ACVC 1.8.

DO 'u ' 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OU Ti. PA3 '.Vhen Data Entercj

,

AVF Control Number: AVF-VSR-95.1087 %

87-04-07-ICC

da® COMPILER
V4 *.DATION SUMMARY REPORT*
Irvine Compiler Corporation
ICC Ada Compiler, Release 4.0

Gould 6050

S.J

Completion of On-Site Testing:i

29 June 1987

eAccesCpioen FoC i'

Ada Validation Facility 4

ASD/SCOL OT1C TA E
Wright-Patterson AFB IH 451433-6503 Urianrno j,ved

Justifi ca :ull

By

Prepared For:

Ada Joint Program Office -,j,-,.|,

United States Department of Defense , i J ,""

Washington, DC i ,;,

CAda is a registered trademark of the United States Goverment

(Ada Joint Program Office).

5'.1

1 t S i
44'

, p

0

;.S

p.

p,',

,W.

N

I,c

S]

. 4
,++-' ."

* ,+,

Ada3 Compiler Validation Summary Report:

Compiler Name: ICC Ada Compiler, Release 4.0

Host: Target:
Gould 6050 under Gould 6050 under
UTX, Version 2.0 UTX, Version 2.0

Testing Completed 29 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation. Facility
Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Ada idat'on Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada JOnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

SAda is a registered trademark of the United States Government
(Ada Joint Program Office).

A

%','.%, ''. ; , ' ,',,' ' '. "-¢; ££ r* f - " %'%" 2 ." " ' .'%'.-'q -. : ; %1% / - i,' - .5' .

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the ICC Ada Compiler, Release 4.0, using
Versibn 1,1 of the Adae Compiler Vali'-l'on Capability (ACVC). The TIC Ada
Ccupil. tv is hos..Lad nn a Gould 600 op rating under UCX, Version 2.0.
Pros'ans processed by this compiler !. ':e executed on a Gould 6050
,-p.rAting under UTX, Version 2.0.

On-s.ttt testing was performed _(June 1987 through 29 June 1987 for the
Irv.,;j Compiler "orporat;-,n in Denver CO, under th,. direution of the Ada
V.'1 l.Lo,, Facility (AVF), according to Ada -.tlidation Organization (AVO)

aic nd procedures. the AVF identi'ie,l 2198 of the 2399 %ests in ACVC
* ,4)f 1.8 ,.) be processed during m*.A[c testing of the comapiler. The 19
tests withdrawn at the time of validation testing, as well as the 182
executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2198 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed
for correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 22 of the processed tests determined to be inapplicable. The
remaining 2176 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 101 245 328 244 161 97 137 261 124 32 218 228 2176 •

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 15 80 92 3 0 0 2 1 6 0 0 5 204

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

&Ada is a registerel trademark of the United States Government

(Ada Joint Program Office).

i .e

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VAI.TD:2'ION SIIMARY RPT)ORT 1-2
1.3 RE. .NCES 1-3
1.4 DEFN TIN OF fERMS 1-3
1.5 ACVC TEST CLASSES 1-4

'HA ,C' 2 COf'GURATION I:NFOTiMATION

2.1 CONFIGURATION TiST-D -,
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation3.....3-4
3.7.2 Test Method3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

RN.

I

'.1

CHAPTER 1

INTRODUCTION

This ilalida~ion Summa±ry Report >k-VSR)Y describes the ex,;i t~o whik-h a
specific Ada compiler conforms to the Ada Standard, ANSI/MTL-STD-1815A. N
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. -

Evei though all validated Ada oompilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems,, hardware) or implementation strategies. All
of the dependencies obs rved during the proocs~ of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile

time, at link time, and during execution.
r.

"*

INTRODUTION .

._, ,/---1

Thi Valiatin Sumar Reprt VS escibestheex.+b t whi.h

speifi Ad compiler conorm *tovJ the Ada Stanard ANI/L-SD-115A

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to ihe Ada Stnndard

" To attempt ;.o identify any unsupported lan4uage constructs
required by the Ada Standard

* ro determine that the implementation-depe'det. behavior is allowed
by the Ada Standard

Testi g of this compiler was Qonducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures (ztablished by
the Ada Validation Organization (AVO). On-site testing was conducted from
27 June 1987 through 29 June 1987 for the Irvine Compileir Corporation in
Denver CO.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

:on istent with the national laws of the originating country, the AVO may
,nake full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
J.S.C. #552). The results of this validation apply only to the computers,
oper-,ting systems, and compiler versions identified in this report.

,.v organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office %
OUSDRE .
The Pentagon, Rm 3D-139 (Fern Street) %"

Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

A1

1-2

. i . / N .,w- -. i . -~iJ * .,. ... i.. .- '. . '' .# I
INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beaurogard Street
Alexandria VA 22311

• :IEFEREN17-S

i Reference Manual for the Ada Prrrnm in ranlua e,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,

the AVF is responsible for conducting compiler validations
according to established policies and procedures. %

AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for

compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION P

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

rarg&t The computer "or which a compler g.e:erates codue

Test A program that c-.ecks a compiler's conformi._y regarding a
particular feature or features to the Ada Standard. In the
context of this report, the tun is used to d. ; nate a
single test, which may compris? one or ore files.

4 ",Mp ,in A test found to be incorrecL Anod not ueu ;', c.heck conormity
hast to the Ada language specification. A test may be incorrect

becaus' it has an invalid test objective, fails c meet it 3
test objective, or .ontains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and T.. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.

Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the

program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

1d'pp

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles sucf'essfully, it is self-checking and produces a PASSED or
FLTED mess., e during execution.

Jiass E test i. St;C-checkilng and p)ducs. a NOT APPLlC'4if, , PASSED,
Fr RAILED message when it is compiled and executed. Howevbr, the Ada

SLiadard permits an implementation to reject programs containing some
features addressed by Class E test.:3 during compilation. T7a.,efore, a Class
tet ii passed by a compiler if I.t is compiled successfully and executes

pr: duce a PASSED ioessage, o' i C it is cejected by the compiler for an
%!'ahbh r'eason.

' e. . uheck that incoupj.-te or illegal Ada programs involving
wultip.e, ieparately compiled units are detected and nob allowed to
execute. Class L tests are corupiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
chapter 114 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place featuri:-i that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-5

Any test that was determined to contain an illegal language construct or an I
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

;5.

S.,

I-6

PS

,,

I |p

CHA-ITER 2

CONFIGURATION INFORMATION

i.,WfGUA'P[ON TESTED

. -andidate compilation system for this validation was tqtd under the

fol i.ng configuration:

Compiler: ICC Ada Compiler, Release 4.0
"z

ACVC Version: 1.8 'p

Certificate Number: 870622W1.08102

Host Computer:

Machine: Gould 6050_

Operating System: UTX, Version 2.0 .4.

Memory Size: 4 megabytes

Target Computer:

Machine: Gould 6050

Operating System: UTX, Version 2.0

Memory Size: 4 megabytes

2-1".'I I - " "' " ' " '' .d..,, . " " '' " ", ' N'p~

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementati c). This compiler in. cha-acterizp.e 'y the fol lowing
interpretations of the Ada Standard,

Capacities.

The compiler co'rectly proct:ik:j Yasts oatairi.ng loop itatements
rieted to 65 levels, block s3tateientb ne.ite,'i ho 65 levels, and
recursive eo ,edures separately compiled as subunit.- nested to 17
levels. It correctly proc a ... npitlation contaLaing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly, (See tests D4A002A, O4A002B, D4AO04A, and
D4AO04B.)

. Predefined types.

This implementation 3upports the additional predefined types
SHORT INTEGER and TINY INTEGER in the package STANDARD. (See
tests B86001C and B86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when the array objects are declared. (See

test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension
is calculated and exceeds 1N;IER'LAST. (See t 1 C521CL4Y.)

A null array with one dimension tf length greater than
INTEGER'LAST may raise NUMERIC ERRc u. CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must matnh in array
slice assignmenti. This impltmentation does not raise an
*' xcption. (See :.-3t. 52103Y.) S

IE assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised

when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression appears to be evaluated in its entirety before

CONSTRAINT ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test

C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E381o4A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical

bounds. (See test E43212B.)

All choices are not evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
If it acnepts the function declaration, the use of the enumeration
literai'- identifier denotes the function. This implemntation
rejp,-'.3 the declaration. (See test E66001D.)

,epresentation clauses.

The Ada Standard does not require an iwplementation to support
representation clauses. If a representation clause is not
supported, then the implementation wust reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.

This implementation accepts 'SIZE It rejects 'STORAGESIZE for
collections and 'SMALL clauses. Enumeration representation
clauses, including those that ipecify noncontiguous values, appear
to be supported. (See tests C55B16A, C87B62A, C87B62B, C87B62C,
and BC1002A.)

Pragmas. .

The pragma INLINE is not supported for procedures or functions.

(See tests CA3004E and CA3004F.) %

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT_10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUTFILE mode and can be
created in both OUTFILE and INFILE modes. (See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

2-4

CONFIGURATION INFOP4ATION

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

Temporary sequential files are given a name. Temporary direct

files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic packase declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and nTC3205D.)

2
2-5 -

CHAPTER 3 !

TEST INFORMATION i

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

ICC Ada Compiler was performed, 19 tests had been withdra,.. The remaining

2380 tests were potentially applicable to this validation. The AVF

determined that 204 tests were inapplicable to this implementation, and

that the 2176 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS 73Y CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 67 865 1172 17 11 44 2176

Failed 0 0 0 0 0 0 0

Inapplicable 2 2 196 0 2 2 204

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1 |

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 101 2'15 328 244 161 97 137 261 124 3? 218 2P8 2176

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 15 80 92 3 0 0 2 1 6 0 0 5 204

4itndrawn 0 5 5 0 0 1 1 2 4 0 1 0 19 S

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 204 tests were inapplicable for the
reasons indicated:

• C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler. -

" C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

3-2
W

TEST INFORMATION

" C34001G and C35702B use LONGFLOAT which is not supported by this
compiler.

" C87B62B..C (2 tests) use the length clauses 'STORAGESIZE for
access types and 'SMALL which are not supported by this compiler.
The length clause is rejected during compilation.

* 960U5B checks implementationj for which th :vmallest and largest
values in type DURATION are different frow the smallest and
largest values in DURATION's base type. This is not the case for
thi.s implementation.

" CA3004E, EA3004C, and LA3004A -se !NLINE oragma for procedures
which is not supported by thi'. eo:ipiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

* AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not t
supported by this compiler.

" AE2101H and CE2401D use an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

" The following 182 tests require a floating-point accuracy that
exceeds the maximum of 14 supported by the implementation:

C24113K..Y (15 tests) C35708K..Y (15 tests) C45421K..Y (15 tests)
C35705K..Y (15 tests) C35802K..Y (15 tests) C45424K..Y (15 tests)
C35706K..Y (15 tests) C45241K..Y (15 tests) C45521K..Z (16 tests)
C35707K..Y (15 tests) C45321K..Y (15 tests) C45621K..Z (16 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for three Class B tests:

B59001A B59001E B85013C

3-3

. -. . .. | : | , r _ :- *% ... '

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the ICC kda Compiler was submitted to the AVF by the applicant for review.
Analys-r i these resultA demonjicated that the compiler succe'-sfully
pass-1 all applicable '.jts, and that the compilar exhibited the e)pectecl
behavior on all inapplicable tests. v

-4.

3. 1 .;" rest Meiod

Testing of the .ECC Ada Compiler using ACVC Version 1.8 was conducted
on-site by a validation team from the AVF. The configuration consisted of
-a Gould 6050 operating under UTX, Version 2.0.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Gould 6050, and all executable tests were
run. Results were printed from the Gould computer.

The compiler was tested usLng comand scripts provided by Irvine Compiler
Corporation and reviewed by the validation team. The following options
were in effect for testing:

Option Effect

-LIST produces a list file
-QUIET turns off messages to console
-STACK CHECK adds code to check stack size for tasks

Tests were compiled, linked, and executed (as appropriate) using one
computer. Test output and compilation listings were captured on magnetic

tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-4

d..VIIT - -.- - X7

TEST INFOP1ATION

3.7.3 Test Site

The validation team arrived in Denver CO on 27 June 1987, and departed
after testing was completed on 29 June 1987.

3-57

p

3-5 ° S

APPENDIX A

DECLARATION OF CONFORMANCE
1%

levine Compiler Corporation has submitted the following
r eclaration of Conformance concernLng the ICC Ada
Compiler.

A-1- 0

I-

DECLARATION OF CONFORMANCE

Compiler Implementor: Irvine Compiler Corporation
Ada® Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH 1

Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

9ase Compiler Name: ICC Ada Compiler Version: Releas 4.0
Host Architecture ISA: Gould 6050 OS&VER #: UTX, Version 2.0
Largc' Architecture ISA: Gould 6050 OS&VER #: UTX, Version 2.0

Implemanor's Declaratio,

l ,-a undersigned, representing Irvine Comp4 ler Corporat!inn, have

Liaplemented no del~berate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this decltration. L
declare that Irvine Compiler Corporation is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All ,
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

Date: -Z

Irvine Compiler Corporation
Dan Eilers, President

Owner's Declaration

I, the undersigned, representing Irvine Compiler Corporation, take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validation
Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

________ ________Date: J'-.uaz. - , ?7-

Irvine Compiler Corporation
Dan Eilers, President

(&Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A- 2

.'* ~

.14.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

ii., _y l.1owed implemcnLation dependencies corvts'p',d to tmprlbentation-
de enJ.nt pragmas, to certain machtne-dep-indent convent.ons is mentLoned I
, hapter !1 of MIL-STD-1815A, -,1 to certain allowed restrictions on
representa.tion clauses. The tmplementation-dependent characteristics of
the ICC Ada Compiler, Release 4.0, are described in the following sections %
which discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the package
STANDARD are also included in this appendix.

,

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 32767;
type TINYINTEGER is range -?28 .. 127;

type FLOAT is digits 14 range %
-3.61850278866599E+75 .. 3.61850278866599E+75;

type DURATION is delta 2.44140625E-04 range -524287.0 . 524287.0;

end STANDARD; 0

B.-

B-ii

Appendix F

ICC Ada Implementation

Gou.d 6050 / UTX, Version 2.0

Irvine Compiler Corporation
18021 Sky Park Circle, Suite L

Irvine, CA 92714
(714) 250-1366

May 28, 1987

1 ICC Ada Implementation
The Ada language definition allows certain differences between compilers. This
section describes the implementation-dependent characteristics of ICC Ada.

2 Pragmas

The following pragmas are added by ICC:

Export This pragma is a complement to the predefined pragma interface. It
enables subprograms written in Ada to be called from other languages.
It takes 2 or 3 arguments. The first is the language to bo called from,
the second is the subprogram name, and the third is an optional suing
designating the actual subprogram name to be used by the linker. This
pragma must appear prior to the body of the designated subprogram.

Compress This pragma is a complement to the representation clause size. It
takes the name of a discrete subtype as the single argument, and specifies
that the subtype should be represented as compactly as possible, regard-
less of the representation of the subtype's base type. This pragma must
appear prior to any reference to the named subtype.

Put, Put-line These pragmas take any number of arguments and write their
value to standard output at compile time when encountered by the com-
piler. The arguments may be expressions of any string, enumeration, or

B-2

,-.-I

ICC Ada Implementation - Appendix F

integer type, whose value is known at compile time. Pragma Put-line
adds a carriage return after printing all of it.3 arguments. These pragmas
are often useful in conj-iction with conditional compiI, on They may
appear anywhere a prgma is allowed.

The following predefined pragmas have been extended by ICC:

Interface This pragma is all-wel to designate vari ables in addition to subpro-
grams. It is also allowed to have an optional third parameter which is a
string designa:.ing the na,a.; for tire linker to use to reference the variable
or subprogram.

Suppress In addition to suppressing the standard checks, ICC also permits
suppressing the following:

exception- info Suppressing exception-info improves run-time perfor- .
mance by reducing the amount of information maintained for mes-
sages that appear when exceptions are propagated out of the main
program or any task. -

all-checks Suppressing all-cheeks suppresses all the standard checks as
well as exception- info.

3 Preprocessor Directives

ICC Ada incorporates an integrated preprocessor whose directives begin with
the k.yword Pragma. They are as follows:

If, Elsif, Else, End If These preprocessor directives provide a conditional
compilation mechanism.

Include This preprocessor directive provides a compile-time source file inclu-
sion mechanism. It is integrated with the library management and auto-
matic recompilation facilities.

4 Input/Output Facilities

4.1

The implementation dependent specifications from TEXT- 10 and DIRECT- 10
are:

type COUNT is range 0 .nteger'last;
subtype FIELD is INTEGER rangse 0 integer'las;.

B-3

I

ICC Ada Inplementation - Appendix F

4.2 FORM Parameter

ICC Ada impleraents the FORM parameter to the procedures OPEN and CRE-
ATE in DIRECTAIO, SEQUENTIALO, and TEXTAO to perform a variety of
ancillary functions. The FORM parameter is a string literal containing parame-
ters in the style of named parameter notation. In general the FORM parameter
has the following format:

'Jiid1 => vialue, [, '1eI4 => valuse,,]

where field, => va!uej can be

OPTION => NORMAL

OPTION => APPEND
PAGE. MARKERS => TRUE
PAGE-MARKERS => FALSE
READ-INCOMPLETE => TRUE
READ.INCOMPLETE => FALSE
MASK => <9 character protection mask>

Each field is separated from its value with a '=>* and each field/value pair
is separated by a comma. Spaces may be added anywhere between tokens and
upper-case/lower-ca3e is insignificant. For example:

create(f. outjile. Olist.datram.
"option -> append. PAGE-.APKERS -> FALSE. Mask -> rvxr.--.');

The interpretation of the fields and their values is presented below. i

OPTION Files may be OPENed for appendage. This causes data to be ap-
pended directly onto the end of an existing file. The default is NORMAL
which overwrites existing data. This field applies to OPEN in all three

standard I/O packages. It has no effect if applied to procedure CREATE.

PACE-MARKERS If TRUE then all TEXT.O routines dealing with page
terminators are disabled. They can be called, they simply do not do
anything. In addition the page terminator character (-L) is allowed to be

read with GET and GETLINE. The default is TRUE which leaves page
terminators active.

READ-.INCOMPLETE This field applies only to DIRECT.IO and SE-
QUENTIALIO and informs the package about what should be done with
reads of incomplete records. Normally, if a READ is attempted and there
is not enough data in the file for a complete record, then END_ ERROR
or DATA-ERROR will be raised. By setting READ-INCOMPLETE to
TRUE, an incomplete record will be read successfully and the remaining

B-4

4S.

ICC Ada Implementation - Appendix F

bytes in the record will be zeroed. Attempting a read after the last in-
complete record will raise END.ERROR. Th. SIZE function will reflect
the fact that there is one more record when the last record is incomplete
and REA D. INCOMPTLETE is TRUE.

MASK Set a protection mask to, c-ntrol access to a ile. The mask is a stan-
dard nine character string notatiua used by UNIX. The letters cannot be 'J.
rearranged or deleted so that the string is always exactly nine characters
long. This applies to CREATE in all three standard I/O packages. The *

default i determined at runtime by the user'i nvilonment setti: '1. i

If a syntax ercor is encountered ivithin the FORM ptrameter then the excep-
tion USEERROR is raised at the OPEN or CREATE call. Also, the standard
function TEXTAO.FORM returns the current setting of the form fields, includ-
ing default values, as a single string.

5 Line Length

The maximum line length is 254 characters.

6 Numeric Types

ICC Ada supports three predefined integer types:

TINY-INTEGER -128..127 8 bits
SHORT.INTEGER -32768..32767 16 bits
INTEGER -2147483648..2147483647 32 bits

Unsigned tiny and short integer types are available via the SIZE representation
clause.

Type float is available. *5.

Attribute FLOAT value

size 64 bits
digits 14
first -3.61850278866599E + 75
last +3.61850278866599E + 75

7 Tasks

The type DURATION is defined with the following characteristics:

B-5

I.,

ICC Ada Implementation - Appendix F

Attribute DURATION value
delta 2.44140625E - 04 sec
small 2.44140625E - 04 sec
first -524287.0 sec
last 524287.0 sec

The subtype SYSTEM.PRIORITY as defined provides the following range:

Attolbute IPRIORITY value
first 0
la.t 254

Higher numbers correspond to higher priorities. If no priority is specified for a
task, PR10RITY'FIRST is assigned during task creation.

8 Representation Clauses

Address clauses are implemented, but only for objects.

The 'SIZE length clause is implemented. %

Enumeration representation clauses are implemented. 'N3
Record representation clauses are implemented.

Interfacing to Assembly, C, and Ada is supported via pragma export and
pragma interface.

Unchecked- conversion is implemented without restriction.

9 Main Programs W

Main programs may have parameters and return values of discrete types or
unconstrained strings. Default values are also permitted.

5%'

B-6

Ile

-- The following software is the sole property of --
-- Irvine Compiler Corporation --
-- containing its proprietary, confidential information. --

-- Copyright (C) 1982-1987 Irvine Compiler Corporation --

package system is

type name is (gould);

-- Language Defined Constants

system_name : constant name := gould;
storage-unit: constant := 8; -- Storage" init size in bits.
memory-size : constant := 16384 * 1024; -- Bytes.
min-int : constant :=-2**31;
maxint : constant : 2**31-1;
maxdigits : constant := 14;
maxmantissa: constant : 31;
finedelta : constant := 2.0**(-30);
tick : constant := 1.0/60.0;

type address is range min-int..max-int; -- Signed 32 bit range.
subtype priority is integer range 0..254; -- 0 is default priority.
-- Constants for the HEAPS package

bits-perbmu : constant := 8; -- Bits per basic machine unit.
maxalignment: constant := 8; -- Maximum alignment required.
minmemblock: constant := 2048; -- Minimum chunk request size.

-- Constants for the HOST package

host-clockresolution: constant := 1; -- 1 microsecond
base-datecorrection : constant := 25_202; -- Unix base date is 1/1/1970.

pragma put-line("Target: ", system-name);
end system;

LI
.- °.B-7-

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDI (I..253 => 'A', 254 => 111)

Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..253 => 'A', 254 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (1..126 I 128..254 => 'A', 127 => '3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..126 I 128..254 => 'A', 127 :> '141')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (1..251 => '0', 252..254 => "298")

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

JJb

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..248 => '0', 249..254 => "69.OE1")

A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and

has enough leading zeroes to'be
the size of the maximum line
length.

$BLANKS (1-234 => '

A sequence of blanks twenty
characters fewer than the size
4' the maximum line length.

$COUNT LAST 2 147 4 83 647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCIICHARS "abcdefghijklmnopqrstuvwxyz$%?@[\]P'{}"

A string literal containing all k

the ASCII characters with
printable graphics that are not

in the basic 55 Ada character
set .

$FIELDLAST 2147483647
A universal integer literal
whose value is TEXT IO.FIELD'LAST.

$FILE NAME WITH BAD CHARS /xxx/xxx/xxx 'a
An illegal- external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR /xxx/xxx/xxx*
An external file name that

either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 524_287.5
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of

DURATION.

$GREATER THAN DURATION BASELAST 10_000_000.0

The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

If -lot

TEST PARA14ETZRS

Name and Meaning Value

$ILLEGAL EXTERNALFILENAME1 /xxx/xxx/xxx
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 /xxx/xxx/xx2
An illegal external file name
that is different from
$ILLEGALEXTERNALFILENAME 1.

$INTEGERFIRST -2147483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER LAST 2147483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -524287.5
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASE FIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAXDIGITS 14
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 254
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2147483647
The universal integer literal
whose value is SYSTE4.MAX INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT-INTEGER,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEG BASEDINT 8#37777777776#
based integer literal whose

,!_ghest order nonzero bit

"alls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NON ASCIICHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose

literals are the identifier
NONNULL and all non-ASCII
characters with printable
graphics.

K

C

K,

C-4]

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the el
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

" C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the •
presence of implicit conversions.

C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test. 1W

" B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOL TYPE--at line .p,

41.

" C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

" B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4AO1OC: The object declaration in line 18 follows a subprogram S
body of the same declarative part.

at

D- 1

r 'V~****.........* % N*% ~ -. *~~-

WITHDRAWN TESTS

" B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements. S

. C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

* C92005A: The "/=" for type PACK.BIGINT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

* BC3204C: The body of BC3204C0 is missing.

..

%07

.4

I. w

D-2

LV V %-

